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Age-related macular degeneration (AMD) is the most common cause of visual impairment among 
the elderly in developed countries, and its prevalence is thus increasing as the population ages; 
however, treatment options remain limited because the etiology and pathogenesis of AMD are 

incompletely defined. Recently, much progress has been made in gene discovery and mechanistic studies, 
which clearly indicate that AMD involves the interaction of multiple genetic and environmental factors. 
The identification of genes that have a substantial impact on the risk for AMD is not only facilitating  
the diagnosis and screening of populations at risk but is also elucidating key molecular pathways of 
pathogenesis. Pharmacogenetic studies of treatment responsiveness among patients with the “wet”  
form of AMD are increasingly proving to be clinically relevant; pharmacogenetic approaches hold great 
promise for both identifying patients with the best chance for vision recovery as well as tailoring  
individualized therapies.
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Introduction

Age-related macular degeneration (AMD) is the most common 
cause of visual impairment among elderly individuals in the devel-
oped world, occurring primarily in persons over the age of 50 
(1–7). It is estimated that 1.75 million people in the United States 
suffer from advanced AMD, and 7.3 million people are affected 
with intermediate AMD, which represents increased risk for devel-
opment of advanced disease (8). AMD thus poses a major public 
health problem with significant economic and social impact. 

AMD is an abnormality of the retinal pigment epithelium 
(RPE) that leads to photoreceptor degeneration of the overlying 
central retina, or macula, and loss of central vision (9–10) (Figure 
1). The macula (Figure 2) is 5–6 mm in diameter, and at its center 
is the fovea, responsible for greatest visual acuity. Early AMD is 
characterized by subretinal deposits, known as drusen, that mea-
sure greater than 60 µm and 
hyper- or hypo-pigmentation 
of the RPE. Intermediate 
AMD is characterized by the 
accumulation of focal or dif-
fuse drusen measuring greater 
than 125 µm and hyper- or 
hypo-pigmentation of the RPE 
(Figure 2). Advanced AMD 
can be classified into either 
of two categories. The first of 
these comprises geographic 
atrophy (GA; i.e., dry, or 
non-exudative, AMD), which 
is characterized by a sharply 
delineated area of REP atro-
phy measuring at least 175 
µm along one dimension and 
including visible choroidal 
vessels (Figure 2C). The alter-
native form of the advanced 
disease is choroidal neovascu-
larization (CNV; i.e., wet, or 
exudative, AMD), which may 
involve some or all of the fol-
lowing: subretinal neovascular 
membranes; subretinal fluid, 
exudates, and hemorrhages 
(Figure 2D); pigment epithelial 
detachment (PED; see Figure 
1B); and subretinal/intraretinal 
scarring. Advanced AMD can 
result in loss of central visual 
acuity and lead to severe and 
permanent visual impairment 
and blindness. Whereas dry 

AMD accounts for 80–90% of all cases of advanced disease, more 
than 90% of AMD patients with severe loss of central vision mani-
fest CNV (11).

The etiology and pathophysiology of AMD are poorly under-
stood. Drusen, which are the histological markers of AMD, are 
yellowish extracellular deposits of lipid, protein, lipoprotein, and 
cellular debris that accumulate between the RPE and Bruch’s mem-
brane or within Bruch’s membrane (12–15). Drusen can include 
complement components and modulators (4, 16–21) and the ser-
ine protease HTRA1 (22). The cause of drusen may be linked to 
one or more of the following key processes that are implicated in 
AMD: 1) increased outer segment turnover; 2) impaired activity/
function of the RPE; 3) free radical/oxidative damage; 4) aging and 
degeneration of elements of Bruch’s membrane (e.g., collagen and 
elastin); 5) reduced clearance of material from Bruch’s membrane 
into choriocapillaries; and 6) deleterious immune system activa-
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Figure 1. The retina revealed. A. Diagrammatic representation of the retina. Inset shows the several types of neuronal 
cells within the macula, the retinal pigment epithelium (RPE), and choroid. B. Two optical coherence tomography images 
of a normal (left) and AMD retina with pigmented epithelium detachment (PED) (right). 
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tion (23). Specific alterations in Bruch’s membrane composition 
that have been suggested to cause drusen include excessive  
lipid deposition and protein cross linking as well as impaired  
permeability to nutrients. 

Genetic and Environmental Risk Factors

Although advancing age is the greatest risk factor associated with 
the development of AMD, environmental and lifestyle factors may 
significantly affect individual risk. Smoking is an important, modi-
fiable factor that has been consistently associated with a twofold 
increased risk for developing AMD (odds ratios ranging from 1.8 
to 3) (24). Oxidative stress and antioxidant depletion have been 
implicated in retinal damage from smoking, although the precise 
mechanism in AMD remains unclear (25–27). Other factors that 
have been reported to influence risk for AMD include sunlight 
exposure, alcohol consumption, increased plasma fibrinogen lev-
els, diet, hypertension, body mass index (BMI), and iris color (24, 
27–31). Regarding diet, antioxidants such as carotenoids, zinc, and 
vitamins A and E may provide a protective benefit against AMD. 

Epidemiological studies have demonstrated differences in the 
prevalence of AMD based on ethnicity, with prevalence among 
Caucasians being greater than that among non-white groups 
(32–33). Such ethnic differences may reflect genetic as well as 
environmental risk factors. AMD has a significant genetic com-
ponent (34–37), as several twin studies have shown significantly 
higher concordance rates between monozygotic twins as compared 
to concordance between dizygotic twins (38–42). Familial aggrega-
tion studies from general populations (43–44) and tertiary eye care 
centers (45–46) reveal that family members of individuals with 
AMD are at increased risk (2.4- to 19.8-fold) for developing the 
disease relative to individuals with no family history. 

Genetic Studies of AMD

Gene association studies reveal that multiple genes may be associ-
ated with AMD (Table 1). An association between AMD and the 
gene that encodes apolipoprotein E (APOE) has been reported, 
through multiple studies (47–51), such that the ε2 allele increases 
risk, whereas the ε4 allele has a protective effect. In a screen for 
sequence variation among the gene family that encodes the fibulin 
(FBLN) glycoproteins, Stone and colleagues detected missense 
mutations in 1.7% of 402 AMD patients (52). Seven different 
missense mutations of the FBLN5 gene have been discovered in 
individuals examined from eight families affected by AMD with a 
distinctive mutation corresponding to each of the affected individ-
uals (53). Evidence from genetic association studies in conjunction 
with the demonstration of complement deposition in the retina 
and choroid has implicated toll-like receptor-(TLR)-3 and -4 in the 
development of certain cases of AMD (53, 54). Most recently, two 
large genome-wide association studies have established another 
two susceptibility loci. A functional promoter variant of the hepat-

ic lipase–encoding gene (LIPC) was found to be strongly associ-
ated with advanced AMD, corroborating the involvement of lipid 
pathways in AMD development (55). Additionally, a locus near the 
gene for metallopeptidase inhibitor 3 (TIMP3), which is involved 
in degradation of the extracellular matrix, was found to be associ-
ated with AMD (56). Other candidate genes include C3, C2/CFB, 
VEGFA, ABCA4, ERCC6, and CX3CR1 (Table 1).

The most convincing evidence for the genetic contribution 
to AMD is the identification of major disease susceptibility alleles 
on chromosomes 1q32 (which includes the gene that encodes 
complement factor H [CFH]) and chromosome 10q26 (which 
includes PLEKHA1, hypothetical gene LOC387715, and HTRA1). 
Specifically, risk of developing AMD is associated with an allele of 
CFH in which a histidine residue is encoded in place of a tyrosine 
residue at amino acid position 402 (16, 57, 58). The increased 
risk ranges between 2- to 4-fold for heterozygote carriers and 
3- to 7-fold for homozygotes. In addition, multiple other poly-
morphisms, many of which are in non-coding regions of CFH or 
in nearby genes encoding other complement factors, demonstrate 
equal or stronger association with disease susceptibility than does 
the CFH Y402H variant (16, 59). Importantly, no single polymor-
phism could account for the entire contribution of CFH to disease 
susceptibility. Rather, multiple polymorphisms defined a set of 
four common haplotypes (two of which promoted disease suscep-
tibility and two of which were seemingly protective) and several 
comparatively rare haplotypes (all of which were associated with 
increased disease susceptibility) (60, 61). At 10q26, containing 
genes PLEKHA1, LOC387715, and HTRA1 (62–65), a single nucle-
otide polymorphism (SNP) in the promoter of the HTRA1 gene 
was associated with a population attributable risk of 49.3% and a 
10-times greater risk of developing CNV (22, 66).  

Figure 2. Fundus images from patients representing several AMD 
subtypes. A. Normal macula. B. Macula with confluent soft drusen (black 
arrows), a hallmark of early AMD. C. Macula of dry AMD with soft drusen 
(black arrows) and geographic atrophy GA (white arrows). D. Macula of  
choroidal neovascularization (CNV) or wet AMD with subretinal hemorrhage 
(black arrows).
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Table 1. Genetic Loci Associated with AMD

Gene symbol 
(name) Function Positionb Variant Odds Ratios (OR)c References

ABCA4  
(ATP-binding cassette, 
sub-family A, member 
4)

Photoreceptor-specific 
expression; transport of 
N-retinylidene-PE across 
the outer segment disc 
membrane

1p22 rs1800553, 
rs1800555

Conflicting results:
ORhetero=5.0 
ORhetero=2.8  
no association

(102, 103)

APOE 
(Apolipoprotein E)

Lipid and cholesterol 
transport 19q13 rs429358, 

rs7412

Conflicting results:
ε2 ORhomo=1.046d; 
ε4 ORhomo=0.35-0.53, 0.847d; 
no association

(103–105)

ARMS2/LOC387715a 
(Age-related maculopa-
thy susceptibility 2)

Unknown; gene prod-
uct is localized to 
mitochondrial outer 
membrane

10q26 rs10490924, in/ ORhomo=8.59 (27, 103, 106)

HTRA1a  
(High temperature 
requirement A1)

Trypsin-like serine  
protease 10q26 rs11200638 ORhomo=6.92d, 7.46d (107, 108)

C2/CFB  
(Complement 2/
Complement factor B)

Regulation of comple-
ment activation 6p21

rs9332739 (c2), 
rs4151667(CFB), 
rs641153 (CFB)

ORhetero=0.32-0.40 (59, 105)

C3  
(Complement 3)

Innate immunity  
(alternative complement 
pathway activator,  
classical pathway  
component)

19p13 rs2230199, 
rs1047286 ORhomo=1.93-3.91 (74, 75, 105)

CFHa 
(Complement factor H)

Inhibitor of alternative 
complement pathway 1q32 rs1061170 ORhomo=6.32d (27, 109)

CFHR1/CFHR3 
(Complement factor 
H-related 1, 3)

Unknown, possible 
overlapping function 
with CFH

1q31-q32 84K bp deletion ORhomo=0.29 (110)

CX3CR1 
(Chemokine [C-X3-C 
motif] receptor 1)

Inflammation 
(chemokine receptor) 3p21 rs3732378 ORhomo=1.98-2.70 (111, 112)

ERCC6 
(Excision-repair  
cross-complementing,  
group 6)

DNA repair 10q11 rs3793784 ORhomo=1.6 (113)

TLR3 
(Toll-like receptor 3)

Innate immunity (tar-
gets+ viral dsRNA) 4q35 rs3775291 ORhomo= 0.44-0.61 (54, 114, 115)

TLR4 
(Toll-like receptor 4)

Innate immunity (bacte-
rial endotoxin receptor) 9q32-q33 rs4986790

Conflicting results:
ORhetero=2.65; 
no association

(53, 54, 114, 115)

VEGFA 
(Vascular endothelial 
growth factor A)

Angiogenesis 6p12 rs833069, 
rs1413711

Conflicting results: 
ORhomo=5.29  
ORhomo=2.40
no association

(116–119)

a Strong association.  
b Chromosomal position. 
c ORhomo, homozygous odds ratio for risk allele; ORhetero, heterozygous odds ratio for risk allele.  
d Metaanalysis.
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The preeminence of the HTRA1 SNP in accounting for the asso- 
ciation of 10q26 to disease was subsequently established also in a 
Utah population; however, LOC387715 manifested very high asso-
ciation as well, suggesting that the AMD risk with regard to 10q26 
may, similar to the scenario in the CFH region, reflect linkage as a 
function of alternative haplotypes. When disease-associated alleles 
exist within both the HTRA1 and CFH loci, the population attrib-
utable risk for AMD is estimated to be 71.4% (22).

Pathogenic Mechanisms in AMD 

The complement activating genes CFH, CFB, and C2, as well as 
the serine protease family gene HTRA1, have the strongest asso-
ciations with AMD and offer a glimpse into possible pathogenic 
mechanisms. LOC387715 is also highly associated. But because 
it has no known protein function, its role in pathogenesis cannot 
be adequately hypothesized. CFH binds and inactivates C3b, an 
important complement protein, and this process contributes to the 
selectivity of innate immune responses (67). Domain 7 in CFH has 
been shown to contain the site of binding specificity that allows 
CFH to recognize heparin or sialic acid on host cells (68). 

The AMD-associated Y402H polymorphism discussed earlier 
happens to occur within domain 7 of CFH (16), possibly reflect-
ing that the binding specificity of CFH is altered in such a way 
as to preclude recognition of host cell surface molecules and the 
corresponding inactivation of bound C3b. Accordingly, the Y402H 
substitution would leave host cells, particularly RPE and choroid-
associated cells, vulnerable to complement-mediated degradation, 
which is consistent with the observation that CFH is expressed 
in drusen (16). Whether or not CFH variants result in drusen 
formation or merely accumulate within drusen is not known; 
however, with CFH expressed in drusen, its accumulation results 
in increased risk of RPE and choroidal cell degradation, threaten-
ing the overlaying retina. The end result would be photoreceptor 

degeneration and, ultimately, AMD. Other CFH, CFB, and C2  
variants could act through similar pathways.

The AMD-associated promoter polymorphism observed in 
HTRA1 presumably alters a binding element (recognized by tran-
scription factors AP2 and SRF) and thereby potentiates HTRA1 
expression (22, 62). HTRA1 is a serine protease and a key modula-
tor of proteoglycans degradation in the extracellular matrix (69). 
HTRA1 proteolytic activity permits other degradative enzymes, 
such as collagenases and matrix metalloproteinases, to access their 
respective substrates (70). Similar to complement factors, HTRA1 is 
expressed in drusen of AMD patients (22). Excessive accumulation 
of HTRA1 in drusen could compromise Bruch’s membrane integrity, 
thereby allowing expansion of choroidal capillaries and resulting in 
neovascular AMD. HTRA1 is also a potent inhibitor of transforming 
growth factor-β, which is involved in extracellular matrix forma-
tion and angiogenesis (71) and thus represents another potential 
pathway to AMD. Alternatively, HTRA1-mediated destabilization of 
Bruch’s membrane could contribute to RPE atrophy and GA. 

Risk Prediction Models

The key to establishing the mechanisms of pathogenesis in AMD 
will depend on an understanding of the interplay between the 
genetic and environmental factors that have been implicated in 
the disease. The development of risk models that consider this 
interplay facilitates the identification of patients at greatest risk for 
developing AMD or progressing through the various stages of the 
disease. Risk models have been developed to predict the preva-
lence and incidence of AMD by duly considering multiple gene 
variations [i.e., in CFH (57, 72, 73), HTRA1/LOC387715 (22, 66), 
C2 (59), CFB (59), and C3 (74, 75)] in concert with environmental, 
ocular, demographic, behavioral, and treatment factors (76). 

Multiplicative models demonstrate that each genetic variant 
noted above is independently associated with AMD, and when 
patients carry high-risk variants on both of the major susceptibility 
genes, the risk of developing AMD increases tremendously (Figure 
3). The discrimination accuracy of predictive models is limited 
to known factors, accounting for only about 40–60% (27, 65, 
77–79) of the genetic risk for developing AMD in Caucasians (after 
adjustment for other genetic and environmental factors). Recently, 
sensitivity has been improved to 88% in an AMD predictive model 
through the inclusion of biomarkers of complement components 
and activation fragments (i.e., Ba, C3a, C3d, C5a, and factor D) 
(80, 81); however, specificity still remains around 73%. (Here, 
“sensitivity” is the probability that the model correctly identifies 
AMD-affected individuals, whereas “specificity” is the probability 
that the model correctly identifies healthy individuals.) In order to 
predict the occurrence and progression of AMD precisely enough 
to be used clinically for diagnosis and prognosis, it is crucial that 
we identify additional genetic or environmental contributors for 
incorporation into predictive models.

Early identification of high-risk individuals could allow  
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Figure 3. AMD risk profile as a function of disease-associated genes and 
smoking status. Joint effect of specific alleles of CFH (rs1061170, Y402H), 
HTRA1 (rs11200638), C3 (rs2230199) and smoking status were shown by 
odds ratios calculated by a logistic regression model, adjusted for age,  
gender, and body mass index (BMI).
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clinicians to better preserve patient vision through targeted sur-
veillance and therapeutic intervention. High-risk individuals 
would also benefit from targeted education regarding healthy life-
styles. Smoking is the most important and obvious environmental 
factor that patients could eliminate to decrease their risk for AMD. 
Although the combined risk for AMD increases with age, regard-
less of genetic background, smoking increases the probability of 
developing AMD by 10–15%. Furthermore, carrying even one risk 
allele of CFH advances the potential age of disease onset by 10 
years, regardless of smoking status (Figure 4).

Implications of Genotype in the  
Treatment of AMD

The etiology and pathophysiology of AMD are becoming increasing-
ly better characterized as the number of genetic factors implicated in 
the pathogenesis of AMD increases. Understanding the role of genet-
ics in AMD allows both direct and indirect tailoring of therapies to 
target specific molecules and pathways. However, studies must first 
prove that therapeutic differences correlate with genotypes before 
clinical practice recommendations can be changed. Currently, there 
is a small but growing body of evidence showing that an individual’s 
genetic profile may influence existing therapies for AMD.

Genotype and Response to Photodynamic Therapy

Photodynamic therapy (PDT) is a treatment for AMD-related CNV. 
Intravenous administration of the photosensitizer verteporfin, 
followed by activation with a non-thermal laser, initiates photo-
chemical reactions, involving singlet oxygen and reactive oxygen 
intermediates, that damage endothelial cells lining the CNV; the 
therapeutic rationale is thus to prevent thrombosis and selective 
occlusion within CNV vessels. However, the efficacy of PDT treat-
ment is limited. Although several ocular predictive factors, such 
as baseline visual acuity and CNV size at presentation, have been 
considered to explain the individually variable efficacy of PDT, 
they have only weakly contributed to effective optimization of 
PDT. Evaluations of the potential role of common AMD-associated 
gene variants in determining CNV responsiveness to PDT have 
been inconsistent. Brantley and colleagues found that visual acu-
ity in PDT-treated individuals with the CFH TT genotype was 
significantly worse than that of PDT-treated TC and CC genotypes 
(82). Goverdhan and colleagues found the degree of visual loss 
following PDT to be significantly higher in the CFH CC genotype 
(83). Two other studies (84–85) reported no significant associa-
tion between CFH genotype and responsiveness to PDT. No effect 
upon PDT responsiveness has been associated with particular 
LOC387715 or HTRA1 variants (86). Instead, two SNPs affecting 
the CRP gene and two SNPs in the VEGF gene (see below) dem-
onstrated significant association with response to PDT (85, 87). 
Moreover, peculiar polymorphisms in genes that encode coagula-
tion balance factors (e.g., factor V, prothrombin, and factor XIII-A) 
as well as in the MTHFR gene have been correlated to the degree 
of post-PDT benefit in Caucasian patients with neovascular AMD 
(88–90). Although patient cohort size was limited in these retro-
spective studies, the correlations identify an opportunity to  
optimize patient eligibility criteria for PDT (Table 2).

Genotype and Responsiveness to  
Anti-VEGF Treatment

Vascular endothelial growth factor (VEGF) is a major molecular 
mediator of neovascularization and is present in CNV membranes 
in wet AMD. VEGF inhibitors have been used to successfully treat 
exudative AMD and have become clinical standards. Ranibizumab 
is a humanized antibody fragment that targets VEGF-A and all of 
its biologically active degradation products. Phase 3 clinical trials 
showed that ranibizumab can stabilize vision in greater than 90% 
of patients and significantly improve vision over a two-year period 
in one-quarter to one-third of patients with neovascular AMD; the 
drug was approved by the FDA for treatment of neovascular AMD 
in 2006 (91–92). Bevacizumab is an FDA-approved anti–VEGF-A 
antibody for treatment of metastatic colorectal and breast cancer. 
Retrospective case series have demonstrated efficacy and safety 
of off-label bevacizumab for treating neovascular AMD (93). The 
ongoing National Eye Institute-(NEI)-sponsored comparison of 
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AMD treatment trials will compare ranibizumab with bevacizumab, 
administered monthly, for the treatment of neovascular AMD in 
1200 patients over a two-year period. 

An investigation of the effects of CFH and HTRA1/LOC387715 
genotypes on the responsiveness of neovascular AMD to intrav-
itreal bevacizumab revealed that visual acuity improved in only 
10.5% of treated patients who were homozygous for the CFH 
Y402H (CC) genotype, whereas visual acuity improved in 53.7% 
of treated patients who possessed CFH TC and TT genotypes  
(P = 0.004). In fact, mean visual acuity worsened, from 20/206 to 
20/341, among the patient population who possessed the CC gen-
otype (P = 0.016). On the other hand, the LOC387715 genotype 
did not appear, after adjusting for age, pretreatment visual acuity, 
and lesion size, to affect patient responsiveness to bevacizumab 
(P=0.18) (94). Because both bevacizumab and ranibizumab target 
the same VEGF-A molecules, it is expected that the same pharma-
cogenetic relationship should exist for ranibizumab. Indeed, a  
retrospective analysis of 156 patients with exudative AMD who 
had been treated with intravitreal ranibizumab monotherapy and 
followed for nine months (95), indicates that patients with the 
CFH (CC) genotype tended to require more injections of drug 
than did other patients, which is indicative of a potential pharma-
cogenetic relationship between CFH genotype and ranibizumab 
treatment outcome (Table 2). 

Genotype and Nutritional Supplementation 

In 2001, the Age-Related Eye Disease Study (AREDS), a large, 
multicenter, double-masked, placebo-controlled clinical trial, estab-
lished that a combination of zinc and antioxidants (β-carotene,  
vitamin C, and vitamin E) produced a 25% reduction in devel-
opment of advanced AMD (over a five-year period) and a 19% 
reduction in severe vision loss in individuals determined to be at 
high risk of developing the advanced forms of the disease. Use of 
these oral supplements has become standard practice in the US 
and remains the only therapy for intermediate and advanced dry 
AMD (96–97). The Study also revealed that CFH Y402H genotype 
could influence the effect of zinc in the supplementation regime. 
Specifically, the greatest benefit was seen in those individuals with 
the low-risk CFH genotype, among whom the rate of AMD pro-
gression was lowered by approximately two-thirds. In contrast, 
AREDS-type supplements seem to have less impact on those with 
the high-risk CFH genotype (98). Moreover, an interaction (P= 
0.004) was observed in the AREDS treatment groups taking zinc 
when compared with the groups taking no zinc, but not in groups 
taking antioxidants compared with those taking no antioxidants (P 
= 0.59). These findings suggest that the genotype-treatment interac-
tion in participants with CFH TT genotype may be related primarily 
to the zinc component of the supplements. Genetic screening could 

thus help to identify those 
individuals at high risk for 
developing advanced AMD and 
could benefit patients who are 
the most likely to respond to 
supplements (Table 2).

Conclusions

Great strides have been made 
in the past five years in iden-
tifying genes associated with 
AMD, although much work  
is yet needed to understand 
the complex molecular genet-
ics of this disease. Future 
endeavors, building on  
current scientific successes, 
should include: 1) detailed 
phenotyping to more accu-
rately describe populations;  
2) large-scale population stud-
ies allowing for better inter-
pretation of mixed findings; 
and 3) functional studies of  
AMD-associated genes in both 
in vitro and in vivo systems.

Table 2. Pharmacogenetic Studies of Treatment Outcome in AMD

Intervention Gene/locus Variants Results

Photodynamic  
therapy

CFH rs1061170 (Y402H)

Controversial:
Outcome for CC genotype lagged CT  
and TT (83); outcome for TT was poorer 
(82); no genotype association (84, 85).

LOC387715 rs10490924 (A69S) No significant genotype association (86).

VEGF rs699947, rs2146323 Anatomic outcome was strongly linked  
to SNPs (87).

CRP rs2808635, rs876538 Positive response was significantly  
associated with both variants (85).

HTRA1 rs11200638 No significant association (86).

FV G1691A Better outcome associated in patients  
carrying both genetic variants (88, 89). FII G20210A 

MTHFR C677T Better outcome associated with variant  
(88–90). 

FXIIIA G185T Poorer outcome associated with variant 
(88–89).

Intravitreal  
bevacizumab

CFH rs1061170 (Y402H)
CC genotype responded significantly worse 
than TC and TT (94); CC genotype more 
likely to require re-injection (95).

LOC387715 rs10490924 (A69S) No significant association (94).

Antioxidants  
and zinc

CFH rs1061170 (Y402H) TT genotype responds better than CC (98).

LOC387715 rs10490924 (A69S) No significant association (98).
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Future studies need to put more emphasis on the harmon- 
ization of descriptions (e.g., primary features, age of onset, 
environmental factors) of AMD cases. Large datasets can then 
be generated to allow stratification of general phenotypes for 
genome-wide linkage analysis and association studies into specific 
phenotypes, such as GA and wet AMD, or primary features, such 
as soft drusen. There may, for example, be genes that confer risk 
for GA, or for exudative AMD, or for both together. Certain genes 
may help determine the subset of early AMD that progresses to 
advanced AMD. Analysis of quantitative trait loci, which assumes 
that the genes that confer risk for the late form are the same genes 
as for the early form, may lose power if such genes are distinct. 
Further defining subphenotypes with respect to environmental 
factors could reveal gene-environment interactions that would oth-
erwise go undetected.

Accurate phenotype descriptions, standardized across  
multiple populations, may lead to high-density marker sets and 
supply result consistency and statistical power in analyzing fur-
ther association and linkage studies. Many of the genes in Table 1 
have been strongly associated in one or more population studies 
but not in other populations. High-density genotyping arrays will 
enhance consistency by providing richer genetic descriptions of 
populations studied.

Finally, functional studies are necessary to demonstrate that 
AMD-associated genetic variants can indeed lead to biological 
changes. Techniques from cell transfection to genetically engi-
neered animals will allow researchers to examine the functional 
roles of multiple alleles in AMD onset and progression. Genetically 
engineered animals are ideal for not only understanding the 
pathophysiology of AMD, but also for discovering possible thera-
peutic interventions. The ability to reproduce genetic findings in 
cell and animal studies is a necessary step in attributing true  
disease association to specific genetic variants.

In this way, the burgeoning field of pharmacogenetics will 
enable clinicians to tailor pharmacotherapy to a patient’s specific 
genetic variations. Identification of genetic risk variants will be 
useful in identifying high-risk populations for early treatment. 
Examples of diseases for which a genetic profile has already 
assisted in treatment include statin treatment in cardiovascular dis-
ease (99), imatinib treatment for chronic myeloid leukemia (100), 
and warfarin dosing with respect to cytochrome P450 CYP2C9 
genotypes (101). As one of the most well-characterized, late-onset, 
complex diseases in terms of clinical features and underlying 
genetic and environmental influences, AMD is an excellent disease 
to which the principles of personalized medicine can be applied. 
Early detection of patients with high-risk genotypes and imple-
mentation of smoking cessation should significantly reduce the  
age of onset and severity of AMD. Furthermore, genotype-based 
customizing of treatment of neovascular AMD by anti-VEGF  
therapy will allow clinicians to identify optimal responders to 
maximize treatment benefit and reduce costs and side effects.  
doi:10.1124/mi.10.5.4
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